The gaining popularity of composites and their typical applications (e.g. aerospace, energy and defence) are driving the requirements for the dynamic characterisation of these materials. Carbon fibre reinforced polymers (CFRP), which are the main concern in this work, are composed of stiff, brittle fibres encased in epoxy resin. Their microstructure results in pronounced anisotropy which makes their characterisation challenging even in basic quasi-static mechanical tests. It must be pointed out that the anisotropy and heterogeneity lead to a complexity in behaviour of these materials including a number of failure mechanisms in the material that are activated by different loading conditions. Despite extensive research in the last three decades, a widely accepted and reliable failure theory for composites does not exist [1][2]. The work in progress, presented here, is related to development of the damage part of a constitutive model intended for modelling of high velocity impact on CFRP aerospace structures. The model is based on spectral decomposition of the material stiffness tensor and strain energy. The model development was supported by extensive mesoscale modelling of the effects of physical damage on the damage parameters related to the material deformation eigenmodes. This is done as part of an integrated effort to produce tools for modelling of high velocity impact on composites in the European project EXTREME**.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.