Deep learning-based algorithms have been widely used in the low-dose CT imaging field, and have achieved promising results. However, most of these algorithms only consider the information of the desired CT image itself, ignoring the external information that can help improve the imaging performance. Therefore, in this study, we present a convolutional neural network for low-dose CT reconstruction with non-local texture learning (NTL-CNN) approach. Specifically, different from the traditional network in CT imaging, the presented NTL- CNN approach takes into consideration the non-local features within the adjacent slices in 3D CT images. Then, both low-dose target CT images and the non-local features feed into the residual network to produce desired high-quality CT images. Real patient datasets are used to evaluate the performance of the presented NTL-CNN. The corresponding experiment results demonstrate that the presented NTL-CNN approach can obtain better CT images compared with the competing approaches, in terms of noise-induced artifacts reduction and structure details preservation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.