PROCEEDINGS ARTICLE | October 22, 2010
Proc. SPIE. 7824, Remote Sensing for Agriculture, Ecosystems, and Hydrology XII
KEYWORDS: Visible radiation, Sun, Data modeling, Satellites, Remote sensing, Reflectivity, Vegetation, Satellite imaging, Earth observing sensors, Absorption
As climatic variability and anthropogenic stressors are growing up continuously, must be defined the proper criteria for
forest vegetation assessment. In order to characterize current and future state of forest vegetation satellite imagery is a
very useful tool. Vegetation can be distinguished using remote sensing data from most other (mainly inorganic) materials
by virtue of its notable absorption in the red and blue segments of the visible spectrum, its higher green reflectance and,
especially, its very strong reflectance in the near-IR. Vegetation reflectance has variations with sun zenith angle, view
zenith angle, and terrain slope angle. To provide corrections of these effects, for visible and near-infrared light, was used
a developed a simple physical model of vegetation reflectance, by assuming homogeneous and closed vegetation canopy
with randomly oriented leaves. A simple physical model of forest vegetation reflectance was applied and validated for
Cernica forested area, near Bucharest town through two ASTER satellite data , acquired within minutes from one
another ,a nadir and off-nadir for band 3 lying in the near infra red, most radiance differences between the two scenes can
be attributed to the BRDF effect. Other satellite data MODIS, Landsat TM and ETM as well as, IKONOS have been
used for different NDVI and classification analysis.