The timing sequence, between different pulses in SG-III laser facility, is controlled with three arbitrary waveform generators. The external clock and trigger are used to inhibit the timing jitter, which is provided by the synchronization system. Close-loop monitoring is used to make sure that the temporal phase can be recovered after reboot of the arbitrary waveform generator. The verification experiment shows that the three arbitrary waveform generators can work synchronously , which ensures the synchronization error control of the SG-III laser facility.
Beam alignment of multi-pass amplification is based on cavity mirror alignment. To optimize multi-segmental parallel cavity mirror alignment arithmetic of high power solid-state lasers, propose a new type of arithmetic of multi-pass beam path cavity mirror based on diffraction symmetry, and the accuracy of multi-pass amplification beam path alignment is improved by 10μrad up to 3.96μrad. The arithmetic avoids low accuracy of CM alignment caused by poor image quality, It makes SG-Ⅲ facility operate long term and properly.
Proc. SPIE. 9255, XX International Symposium on High-Power Laser Systems and Applications 2014
KEYWORDS: Mirrors, Sensors, High power lasers, Wavefronts, Wavefront aberrations, Adaptive optics, Control systems, Wavefront distortions, National Ignition Facility, Beam controllers
Experiment of entire beam wavefront compensation was carried out in a beamline of a high power laser facility, and two adaptive optics systems with different intentions were applied in the chosen beamline. After correction, the far-filed irradiance distribution is concentrated evidently and the entrance rate of 3ω focal spot to a 500-μm hole is improved to be about 95% under number kilojoules energy.
The high power solid laser system is becoming larger and higher energy that requires the beam automatic alignment faster and higher precision to ensure safety running of laser system and increase the shooting success rate. This paper take SGIII laser facility for instance, introduce the basic principle of automatic alignment of large laser system. The automatic alignment based on digital image processing technology which use the imaging of seven-classes spatial filter pinholes for feedback to working. Practical application indicates that automatic alignment system of cavity mirror in SGIII facility can finish the work in 210 seconds of four bundles and will not exceed 270 seconds of all six bundles. The alignment precision promoted to 2.5% aperture from 8% aperture. The automatic alignment makes it possible for fast and safety running of lager laser system.