This paper presents a novel approach for the design and fabrication of graphene-based and fully printed single patch antennas. Graphene ink for inkjet printing is prepared by dispersing graphene nano flakes (12 nm) into terpineol and cyclohexanone solvents, and ethyl cellulose surfactant. The viscosity of the as-synthesized graphene ink is found to be 5.5 cP which is compatible with the inkjet printing. Raman spectroscopy is used to provide a structural fingerprint of the printed graphene flakes. Additionally, the printed graphene patterns become conductive for 35-40 printed layers. The physical structure of the single patch antenna consists of a printed transmission line and a single patch. The resonant frequency for the inkjet-printed graphene single patch antenna on DuPont Kapton FPC Polyimide substrate is 5 GHz, which is consistent with the design. The performance of printed graphene antenna is compared with the transferred graphene and printed silver antennas. The printed graphene antenna shows a better gain of 4.47 dBi and efficiency of 70%.
This paper presents the design and fabrication of inkjet printed graphene field-effect transistors (GFETs). The inkjet printed GFET is fabricated on a DuPont Kapton FPC Polyimide film with a thickness of 5 mill and dielectric constant of 3.9 by using a Fujifilm Dimatix DMP-2831 materials deposition system. A layer by layer 3D printing technique is deployed with an initial printing of source and drain by silver nanoparticle ink. Then graphene active layer doped with molybdenum disulfide (MoS2) monolayer/multilayer dispersion, is printed onto the surface of substrate covering the source and drain electrodes. High capacitance ion gel is adopted as the dielectric material due to the high dielectric constant. Then the dielectric layer is then covered with silver nanoparticle gate electrode. Characterization of GFET has been done at room temperature (25°C) using HP-4145B semiconductor parameter analyzer (Hewlett-Packard). The characterization result shows for a voltage sweep from -2 volts to 2 volts, the drain current changes from 949 nA to 32.3 μA and the GFET achieved an on/off ratio of 38:1, which is a milestone for inkjet printed flexible graphene transistor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.