Paper
13 June 2002 Spatiotemporal temperature profiling of corneal surface during LTK
Author Affiliations +
Abstract
Accurate prediction of LTK treatments requires refined thermal corneal models which necessitate precise input parameters. The overall objective of this study was to provide detailed information on the spatiotemporal temperature profile of the corneal surface, during in-vitro thermal keratoplasty. LTK was performed in-vitro on freshly harvested porcine eyes (N equals 16) with the Sunrise Technologies corneal shaping system (Model SUN 1000). Spatiotemporal thermal imaging of the irradiated corneas were obtained with a short wave Inframetrics thermal camera (Model PM290). Images were obtained at 8-bits resolution, with ~100 microns spatial and ~17 msec temporal resolution respectively. Treatment pattern consisted of eight spots at 6 mm zone, while lasing was conducted at settings of either 100 mJ and 15 pulses (N equals 8), or 260 mJ and 7 pulses (N equals 8). Temporal and spatial variation of the corneal surface temperatures were calculated at locations of importance to LTK. At the laser spot, temperature profiles consisted of transients coinciding approximately with the laser pulses. Maximum transient temperatures observed were 98.0+/- 4.6 degree(s)C for the high and 56.3+/- 2.6 degree(s)C for the low energy respectively. These temperature transients were superimposed on an envelope of lower-slowly varying temperatures. The maximum temperatures observed for this temperature envelope, were 51.8+/- 3.4 degree(s)C for the high and 35.4+/- 3.4 degree(s)C for the low energy respectively. The evolution of either the maximum temperature transients or the lower temperature envelope, followed exponential growth of the form: T equals A * exp(B*t). Maximum temperatures at locations 0.5 mm and 1 mm away from the laser spot, reached 25.7 degree(s)C and 23.3 degree(s)C for the low energy, and 34 degree(s)C and 25.6 degree(s)C for the high energy settings respectively. Temperature decay constants were approximately 2 to 3 sec, while the spatial temperature profile at the laser spot extended more than 2 mm at 2.5 sec post irradiation. The data obtained may help to refine corneal thermal modeling during LTK, and thus improve predictability of current or future-modified-treatments.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Thanassis Papaioannou, Ezra I. Maguen M.D., and Warren S. Grundfest M.D. "Spatiotemporal temperature profiling of corneal surface during LTK", Proc. SPIE 4611, Ophthalmic Technologies XII, (13 June 2002); https://doi.org/10.1117/12.470582
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Thermal modeling

Cameras

Thermography

In vitro testing

Cornea

Eye models

Tissues

Back to Top