Open Access
4 March 2024 Tensorial tomographic Fourier ptychography with applications to muscle tissue imaging
Shiqi Xu, Xi Yang, Paul Ritter, Xiang Dai, Kyung Chul Lee, Lucas Kreiss, Kevin C. Zhou, Kanghyun Kim, Amey Chaware, Jadee Neff, Carolyn Glass, Seung Ah Lee, Oliver Friedrich, Roarke Horstmeyer
Author Affiliations +
Abstract

We report tensorial tomographic Fourier ptychography (T2oFu), a nonscanning label-free tomographic microscopy method for simultaneous imaging of quantitative phase and anisotropic specimen information in 3D. Built upon Fourier ptychography, a quantitative phase imaging technique, T2oFu additionally highlights the vectorial nature of light. The imaging setup consists of a standard microscope equipped with an LED matrix, a polarization generator, and a polarization-sensitive camera. Permittivity tensors of anisotropic samples are computationally recovered from polarized intensity measurements across three dimensions. We demonstrate T2oFu’s efficiency through volumetric reconstructions of refractive index, birefringence, and orientation for various validation samples, as well as tissue samples from muscle fibers and diseased heart tissue. Our reconstructions of healthy muscle fibers reveal their 3D fine-filament structures with consistent orientations. Additionally, we demonstrate reconstructions of a heart tissue sample that carries important polarization information for detecting cardiac amyloidosis.

CC BY: © The Authors. Published by SPIE and CLP under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Shiqi Xu, Xi Yang, Paul Ritter, Xiang Dai, Kyung Chul Lee, Lucas Kreiss, Kevin C. Zhou, Kanghyun Kim, Amey Chaware, Jadee Neff, Carolyn Glass, Seung Ah Lee, Oliver Friedrich, and Roarke Horstmeyer "Tensorial tomographic Fourier ptychography with applications to muscle tissue imaging," Advanced Photonics 6(2), 026004 (4 March 2024). https://doi.org/10.1117/1.AP.6.2.026004
Received: 2 May 2023; Accepted: 1 February 2024; Published: 4 March 2024
Advertisement
Advertisement
KEYWORDS
Muscles

Biological samples

Tissues

Tomography

Birefringence

Polarization

Image restoration

Back to Top