This year’s competition proposed to survey the state-of-the-art broadband, near-IR multilayer dielectric (MLD) mirrors designed for ultra-short, pulsed laser applications. The requirements for the coatings were a minimum reflection of 99.5% at 45-degree incidence angle for S-polarization from 830 nm to 1010 nm and group delay dispersion (GDD) < ± 50 fs2. The participants in this effort selected the coating materials, coating design, and deposition method. Samples were damage tested at a single testing facility to enable direct comparison among the participants using a 25 ± 5 fs OPCPA laser system operating at 5 Hz. A double blind test assured sample and submitter anonymity. The damage performance results, sample rankings, details of the deposition processes, coating materials and substrate cleaning methods are shared here. We found that multilayer coatings using tantala and/or hafnia as high index materials were top performers within several coating deposition groups. Specifically, dense coatings by ion-beam sputtering (IBS), magnetron sputtering (MS), and electron-beam ion assisted deposition (e-beam IAD) exhibited highest damage initiation onset (LIDT) while e-beam coatings were low performers. In addition, damage growth onset (LDGT) was also examined and the results are reported here for all samples as this performance metric plays an important role in establishing the safe operational conditions for larger aperture, ultrashort pulsed lasers. Lastly, not all coating samples in the survey met the GDD requirements stated above and associated measurements are discussed in the context of the present and past competitions focused on similar broadband, near-IR MLD coatings.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.