Magnetoresistive random-access memory (MRAM) technology and recent developments in fabrication processes have shown it to be compatible with Si-based complementary metal oxide semiconductor (CMOS) technologies. The perpendicular spin transfer torque MRAM (STT-MRAM) configuration opened up opportunities for an ultra-dense MRAM evolution and was most widely adapted for its scalability. Insertion of STT-MRAM in the back end of line (BEOL) wiring levels has many advantages, including density, latency, and endurance with the promise of being comparable to performance of dynamic random access memory technology (DRAM). There are several important parameters at multiple process steps which require precise metrology for STT-MRAM integration. Inline metrology of the magnetic tunnel junction (MTJ) pillar is vital to calibrate the magnetic read/write performance parameters. This work discusses various challenges to monitor critical process steps for integrating STT-MRAM in advanced CMOS technologies and key metrology solutions are presented. To precisely predict MRAM junction resistance early in the process flow, a machine learning model was developed using scatterometry spectra collected after MTJ pillar formation and corresponding resistance data from the end of line electrical test. This machine learning model utilizes metrology data from the pillar formation process and can predict accurate device resistance values. Additionally, carefully monitoring the required planarization process of an interlayer dielectric deposited after the MTJ pillar formation is critical to avoid subsequent defects. Several modelling techniques are discussed and a new spectral interferometry-based technique, vertical travelling scatterometry (VTS), is demonstrated as a solution for measurements on fully integrated device areas.
With the increasing prevalence of complex device integration schemes, trilayer patterning with a solvent strippable hardmask can have a variety of applications. Spin-on metal hardmasks have been the key enabler for selective removal through wet strip when active areas need to be protected from dry etch damage. As spin-on metal hardmasks require a dedicated track to prevent metal contamination and are limited in their ability to scale down thickness without compromising on defectivity, there has been a need for a deposited hardmask solution. Modulation of film composition through deposition conditions enables a method to create TiO2 films with wet etch tunability. This paper presents a systematic study on development and characterization of plasma-enhanced atomic layer deposited (PEALD) TiO2-based hardmasks for patterning applications. We demonstrate lithographic process window, pattern profile, and defectivity evaluation for a trilayer scheme patterned with PEALD-based TiO2 hardmask and its performance under dry and wet strip conditions. Comparable structural and electrical performance is shown for a deposited versus a spin-on metal hardmask.
With the increasing prevalence of complex device integration schemes, tri layer patterning with a solvent strippable hardmask can have a variety of applications. Spin-on metal hardmasks have been the key enabler for selective removal through wet strip when active areas need to be protected from dry etch damage. As spin-on metal hardmasks require a dedicated track to prevent metal contamination, and are limited in their ability to scale down thickness without comprising on defectivity, there has been a need for a deposited hardmask solution. Modulation of film composition through deposition conditions enables a method to create TiO2 films with wet etch tunability. This paper presents a systematic study on development and characterization of PEALD deposited TiO2-based hardmasks for patterning applications. We demonstrate lithographic process window, pattern profile, and defectivity evaluation for a tri layer scheme patterned with PEALD based TiO2 hardmask and its performance under dry and wet strip conditions. Comparable structural and electrical performance is shown for a deposited vs a spin-on metal hardmask.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.